博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[家里蹲大学数学杂志]第299期丘成桐大学生数学竞赛2014年几何与拓扑个人赛试题...
阅读量:5342 次
发布时间:2019-06-15

本文共 1855 字,大约阅读时间需要 6 分钟。

1.Let $X$ be the quotient space of $\bbS^2$ under the identifications $x\sim -x$ for $x$ in the equator $\bbS^1$. Compute the homology groups $H_n(X)$. Do the same for $\bbS^3$ with antipodal points of the equator $\bbS^2\subset\bbS^3$ identified.

 

2.Let $M\to\bbR^3$ be a graph defined by $z=f(u,v)$ where $\sed{u,v,z}$ is a Descartes coordinate system in $\bbR^3$. Suppose that $M$ is a minimal surface. Prove that

(1) The Gauss curvature $K$ of $M$ can be expressed as $$\bex K=\lap \ln \sex{1+\frac{1}{W}},\quad W=\sqrt{1+\sex{\frac{\p f}{\p u}}^2+\sex{\frac{\p f}{\p v}}^2}. \eex$$

(2) If $f$ is defined on the whole $uv$-plane, then $f$ is a linear function (Bernstein theorem).

 

3. Let $M=\bbR^2/ \bbZ^2$ be the two-dimensional torus, $L$ the line $3x=7y$ in $\bbR^2$, and $S=\pi(L)\subset M$ where $\pi:\bbR^2\to M$ is the projection map. Find a differential form on $M$ which represents the Poincar\'ee dual of $S$.

 

4. Let $(\tilde M,\tilde g)\to (M,g)$ be a Riemannian submersion. This is a submersion $p:\tilde M\to M$ such that for each $x\in \tilde M$, $\ker^\perp (Dp)\to T_{p(x)}M$ is a linear isometry.

(1) Show that $p$ shortens distance.

(2) If $(\tilde M,\tilde g)$ is complete, so is $(M,g)$.

(3) Show by example that if $(M,g)$ is complete, $(\tilde M,\tilde g)$ may not be complete.

 

5. Let $\psi:M\to\bbR^3$ be an isometric immersion of a compact surface $M$ into $\bbR^3$. Prove that $$\bex \int_M H^2\rd \sigma \geq 4\pi, \eex$$ where $H$ is the mean curvature of $M$ and $\rd \sigma$ is the area element of $M$.

 

6. The unit tangent bundle of $\bbS^2$ is the subset $$\bex T^1(\bbS^2)=\sed{(p,v)\in\bbR^2;\ \sen{p}=1,\ (p,v)=0, \sen{v}=1}. \eex$$ Show that it is a smooth submanifold of the tangent bundle $T(\bbS^2)$ of $\bbS^2$ and $T^1(\bbS^2)$ is diffeomorphic to $\bbR P^3$. 

转载于:https://www.cnblogs.com/zhangzujin/p/3843314.html

你可能感兴趣的文章
ASP.NET(VB.NET)网页中输出水晶报表
查看>>
poj 3342 树形dp
查看>>
有时我们需要调用一个函数时,返回多个不同类型的数据
查看>>
lock关键字只不过是C#提供的语法糖
查看>>
在后台中高效工作 – 后台任务
查看>>
Unity Editor(一)OnInspectorGUI的重写与面板的创建
查看>>
AXURE RP8 - 实战手册 网站和APP原型制作案例精粹
查看>>
《Linux权威指南》阅读笔记(4)
查看>>
Git出现提交错误--Push to origin/master was rejected(转)
查看>>
Javascript Math
查看>>
Tensorflow之tensorboard可视化
查看>>
Python基础(下)
查看>>
[转载] 史密斯夫妇
查看>>
CUDA gputimer.h头文件
查看>>
CentOS 6.5下Git服务器搭建
查看>>
Two Sum II - Input array is sorted
查看>>
ArcGIS AddIN开发异常之--修饰符“static”对该项无效
查看>>
6-2 S树 uva712
查看>>
【练习】多表查询
查看>>
Codevs 1036 商务旅行
查看>>